Natural variation of Arabidopsis response to nitrogen availability.

نویسندگان

  • Sobia Ikram
  • Magali Bedu
  • Françoise Daniel-Vedele
  • Sylvain Chaillou
  • Fabien Chardon
چکیده

Our understanding of plant growth in response to nitrogen (N) supply is mainly based on studies of mutants and transformants. This study explored the natural variability of Arabidopsis thaliana first to find out its global response to N availability and secondly to characterize the plasticity for growth and N metabolism among 23 genetically distant accessions under normal (N+), limited (N-), and starved (N0) N supplies. Plant growth was estimated by eight morphological traits characterizing shoot and root growth and 10 metabolic parameters that represented N and carbon metabolism. Most of the studied traits showed a large variation linked to genotype and nutrition. Furthermore, Arabidopsis growth was coordinated by master traits such as the shoot to root ratio of nitrate content in N+, root fresh matter and root amino acids in N-, and shoot fresh matter together with root thickness in N0. The 23 accessions could be gathered into four different groups, according to their growth in N+, N-, and N0. Phenotypic profiling characterized four different adaptative responses to N- and N0. Class 1 tolerated N limitation with the smallest decrease in shoot and root biomass compared with N+, while class 2 presented the highest resistance to N starvation by preferential increased root growth, huge starch accumulation, and high shoot nitrate content. In contrast, class 3 plants could tolerate neither N limitation nor N starvation. Small plants of class 4 were different, with shoot biomass barely affected in N- and root biomass unaffected in N0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana

Nitrogen fertilization increases crop yield but excessive nitrate use can be a major environmental problem due to soil leaching or greenhouse gas emission. Root traits have been seldom considered as selection criteria to improve Nitrogen Use Efficiency of crops, due to the difficulty of measuring root traits under field conditions. Nonetheless, learning about mechanisms of lateral root (LR) gro...

متن کامل

The role of sugars in integrating environmental signals during the regulation of leaf senescence.

Although leaf senescence results in a loss of photosynthetic carbon fixation, the senescence-dependent release of nutrients, especially of nitrogen, is important for the growth of young leaves and for reproduction. Environmental regulation of senescence is therefore a vital factor in the carbon and nitrogen economy of plants. Leaf senescence is a highly plastic trait that is affected by a range...

متن کامل

Physiological genomics of response to soil drying in diverse Arabidopsis accessions.

Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we ...

متن کامل

Genetic variation suggests interaction between cold acclimation and metabolic regulation of leaf senescence.

The extent to which leaf senescence is induced by nitrogen deficiency or by sugar accumulation varies between natural accessions of Arabidopsis (Arabidopsis thaliana). Analysis of senescence in plants of the Bay-0 x Shahdara recombinant inbred line (RIL) population revealed a large variation in developmental senescence of the whole leaf rosette, which was in agreement with the extent to which g...

متن کامل

Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis.

Improving plant nitrogen (N) use efficiency or controlling soil N requires a better knowledge of the regulation of plant N metabolism. This could be achieved using Arabidopsis as a model genetic system, taking advantage of the natural variation available among ecotypes. Here, we describe an extensive study of N metabolism variation in the Bay-0 x Shahdara recombinant inbred line population, usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 63 1  شماره 

صفحات  -

تاریخ انتشار 2012